Cyclic Codes Over Z4 of Even Length

نویسندگان

  • Steven T. Dougherty
  • San Ling
چکیده

We determine the structure of cyclic codes over Z4 for arbitrary even length giving the generator polynomial for these codes. We determine the number of cyclic codes for a given length. We describe the duals of the cyclic codes, describe the form of cyclic codes that are self-dual and give the number of these codes. We end by examining specific cases of cyclic codes, giving all cyclic self-dual codes of length less than or equal to 14.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermitian Self-Dual Cyclic Codes of Length $p^a$ over $GR(p^2, s)$

In this paper, we study cyclic codes over the Galois ring GR(p, s). The main result is the characterization and enumeration of Hermitian self-dual cyclic codes of length pa over GR(p, s). Combining with some known results and the standard Discrete Fourier Transform decomposition, we arrive at the characterization and enumeration of Euclidean self-dual cyclic codes of any length over GR(p, s). S...

متن کامل

Cyclic codes over $\mathbb{Z}_4[u]/\langle u^k\rangle$ of odd length

Let R = Z4[u]/〈u〉 = Z4 + uZ4 + . . . + uZ4 (u = 0) where k ∈ Z satisfies k ≥ 2. For any odd positive integer n, it is known that cyclic codes over R of length n are identified with ideals of the ring R[x]/〈x − 1〉. In this paper, an explicit representation for each cyclic code over R of length n is provided and a formula to count the number of codewords in each code is given. Then a formula to c...

متن کامل

On constacyclic codes over Z4[u]/〈u2-1〉 and their Gray images

We first define a new Gray map from R = Z4+uZ4 to Z 2 4, where u 2 = 1 and study (1 + 2u)-constacyclic codes over R. Also of interest are some properties of (1 + 2u)constacyclic codes over R. Considering their Z4 images, we prove that the Gray images of (1+2u)-constacyclic codes of length n over R are cyclic codes of length 2n over Z4. In many cases the latter codes have better parameters than ...

متن کامل

On cyclic DNA codes over the Ring $\Z_4 + u \Z_4$

In this paper, we study the theory for constructing DNA cyclic codes of odd length over Z4[u]/〈u 2〉 which play an important role in DNA computing. Cyclic codes of odd length over Z4+uZ4 satisfy the reverse constraint and the reverse-complement constraint are studied in this paper. The structure and existence of such codes are also studied. The paper concludes with some DNA example obtained via ...

متن کامل

Cyclic Codes and Self-Dual Codes Over

We introduce linear cyclic codes over the ring F 2 + uF 2 = f0; 1; u; u = u + 1g, where u = 0 and study them by analogy with the Z4 case. We give the structure of these codes on this new alphabet. Self-dual codes of odd length exist as in the case of Z4-codes. Unlike the Z4 case, here free codes are not interesting. Some nonfree codes give rise to optimal binary linear codes and extremal self-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2006